Archive for Telescope

M34 Open Cluster at Perseus Constellation

Posted in Astrophotography with tags , , , , , , , , , , , on 2013/10/12 by computerphysicslab

Very close to Tringulum galaxy M33 we may spot a bright open cluster towards Perseus constellation. Its name is M34 and here it is a picture I took today through a remote 6 inch apochromatic refractor on New Mexico that shows colorful stars. Enjoy it!

M34-open-cluster-color-Perseus-constellation

Advertisements

Jupiter through a 10 inch Mewlon telescope

Posted in Astrophotography with tags , , , , , , on 2013/02/09 by computerphysicslab
Tonight I’ve enjoyed observing a visual of Jupiter through a Mewlon 250. Although there was turbulence, it was worth. I had never seen a Jupiter so detailed by telescope. I could depict up to four bands, the great red spot and both polar icecaps. Inside bands I  could see small details as well. Also it has showed up Jupiter’s satellite Europa at its limbo during the observation.

I’ve got the best visual results without barlow, only using  a 15 mm (200x magnification) eyepiece. When using a barlow 2x, obtaining 400x magnification, details were not so easy to detect.

The telescope is a reflector Takahashi Dall-Kirkham at f/12, yielding 3 meters of focal.

I have also realized that when sit down in a chair and keeping the vision of the planet during several minutes trying different focus, the eye eventually adapts to the brightness of the planet and increasingly captures more details.

Here it is a picture of the setup:

Mewlon Setup

Buy now a telescope to see the stars

Posted in Astrophotography with tags , , , , on 2012/08/20 by computerphysicslab

Check out our new telescope store. Cheap prices and fast deliveries.

Moon scratched by the claw of a bear

Posted in Astrophotography with tags , , , , , , , , , , , , on 2011/08/31 by computerphysicslab

Near Bullialdus crater (at top-right side of the picture) there is a quite interesting region called Rimae Hippalus. Hippalus crater is the big one (left-center side of the picture). It is a big crater. In this image, shadows in this crater due to a low altitude sunlight creates a visual effect, as if a great creature had stamped his bare footprint in lunar soil. Do you see it?

Bright nebulae at Milky Way core

Posted in Astrophotography with tags , , , , , , , , , , , , on 2011/07/04 by computerphysicslab

Summer views of Milky Way are spectacular because the galaxy bulge is brighter and broader than its spiral arms visible the rest of the year. Located near Sagittarius and Scorpius constellations, the bright nebulae and dark lanes of the area creates a beautiful contrast in brightness and colors.

This picture is a 4-pane mosaic ensambled with free software Fitswork 4.40. Every pane is a 10 minutes exposition through a 55mm lens attached to a Canon EOS 450d (Rebel XSi) DSLR camera, mounted over a motorized equatorial mount, Sky Watcher EQ6.

Mosaic - Sagittarius Scorpius - Milky Way core

A full resolution picture is available at AweSky

Mare Crisium and Palus Somni

Posted in Astrophotography with tags , , , , , , , , , , , , on 2011/02/28 by computerphysicslab

Mare Crisium is one of my favorite Moon areas. There is a lot of details inside Crisium, but it is not easy to detect, because it is very fine. High aperture telescopes are needed to spot the small impact craters inside this maria, because its typical lengths are 1 or 2 kilometers wide.

Near Mare Crisium there is another big area called Palus Somni (below), that is visible in this picture made with an amateur telescope. The big and bright crater in the middle is Proclus:

The telescope used is a Celestron Nexstar 5SE and the camera is a Canon EOS 450d (Rebel XSi) DSLR. The picture actually is a mosaic made of two panes.

Celestron NexStar 5SE vs Takahashi FS102

Posted in Astrophotography with tags , , , , , , , , , , , , , , on 2011/02/19 by computerphysicslab

This week I had the chance to test a Takahashi FS102 refractor apochromatic fluorite telescope and also a Celestron NexStar 5SE Schmidt-Cassegrain catadioptric telescope. First one has an aperture of 102mm and second one of 125mm plus a central obstruction. Their light gathering power is similar and also their theoretical resolution. Nevertheless I wanted to check by myself the mythical optical quality of FS102 in contrast to the well-known Celestron.

Tests were made using the same camera to capture video and similar weather conditions both nights. I took in both cases a video of the planet Saturn when reaching the meridian, its maximum altitude. Celestron C5 perform flawlessly because I could get a sharp view of Saturn and its ring at 500x magnification. Takahashi also let me reach that high powers with a crisp result. C5’s focuser is very precise, but Takahashi’s is even more being a rack and pinion system. Focusing the FS 102 was very pleasant due to its smoothness and accuracy. Probably a better contrast in visual images delivered by refractor telescopes also gave it an advantage here.

Trying to resolve fine details, in both telescopes I could see the shadow of Saturn over the rings clearly. Here it is the final picture after applying Registax and Fitswork4 to both videos.

Probably FS102 performs better on wide field astrophotography, but on planetary imaging this picture above is my conclusion.